Long-Term Clinical Outcomes of Sirolimus- Versus Paclitaxel-Eluting Stents for Patients With Unprotected Left Main Coronary Artery Disease

Analysis of the MAIN-COMPARE (Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty Versus Surgical Revascularization) Registry

Jong-Young Lee, MD,* Duk-Woo Park, MD, PhD,* Sung-Cheol Yun, PhD,† Seung-Whan Lee, MD, PhD,* Young-Hak Kim, MD, PhD,* Cheol Whan Lee, MD, PhD,* Myeong-Ki Hong, MD, PhD,* Seong-Wook Park, MD, PhD,* Seung-Jung Park, MD, PhD*

Seoul, Korea

Objectives
The aim of this study was to evaluate long-term clinical outcomes after implantation of sirolimus-eluting stents (SES) or paclitaxel-eluting stents (PES) among patients with unprotected left main coronary artery (LMCA) disease.

Background
There have been few comparisons of long-term outcomes among currently available drug-eluting stents (DES) for the treatment of LMCA disease.

Methods
A total of 858 consecutive patients with unprotected LMCA stenosis were treated with SES (n = 669) or PES (n = 189) between May 2003 and June 2006. Primary outcome was the composite of death, myocardial infarction (MI), or target vessel revascularization (TVR).

Results
Baseline clinical and angiographic characteristics were similar in the 2 groups. During 3 years of follow-up, the adjusted risk of primary composite outcome was similar among the groups (SES vs. PES: 25.8% vs. 25.7%, hazard ratio [HR]: 0.95, 95% confidence interval [CI]: 0.64 to 1.41, p = 0.79). The 2 groups also showed a comparable adjusted rate of each component of outcome: death (9.1% vs. 11.0%, HR: 0.92, 95% CI: 0.47 to 1.80, p = 0.82), MI (8.1% vs. 8.0%, HR: 0.80, 95% CI: 0.43 to 1.48, p = 0.47), and TVR (12.1% vs. 10.6%, HR: 1.10, 95% CI: 0.53 to 2.29, p = 0.81). The 3-year rates of definite or probable stent thrombosis were 0.6% in the SES group and 1.6% in the PES group (adjusted p = 0.18).

Conclusions
In consecutive patients with unprotected LMCA disease undergoing DES implantation, SES and PES showed similar long-term clinical outcomes in terms of death, MI, repeat revascularization, and stent thrombosis. (J Am Coll Cardiol 2009;54:853–9) © 2009 by the American College of Cardiology Foundation

Bypass surgery has been recommended—on the basis of clinical studies comparing coronary artery bypass grafting (CABG) with medical therapy—as the treatment of choice for patients with unprotected left main coronary artery (LMCA) disease, and recent appropriateness criteria for coronary revascularization regard CABG as the most appropriate treatment for LMCA disease (1–3). However, recent improvements in interventional techniques and adjunctive pharmacology have led to a reevaluation of the role of percutaneous coronary intervention (PCI) as a viable treatment option for LMCA disease (4–8). In addition, interest in left main stenting has intensified with the availability of drug-eluting stents (DES), which have been found to significantly reduce the rates of restenosis and repeat revascularization (9–16), as compared with bare-metal stents. However, few data are available on the long-term clinical outcomes of currently available DES for treatment of unprotected LMCA disease. Therefore, we compared the 3-year
clinical outcomes after implanta-
tion of sirolimus-eluting stents
(SES) and paclitaxel-eluting stents
(PES) in patients with unpro-
tected LMCA disease.

Methods

Study population and proce-
dures. As previously described
(8), the MAIN-COMPARE
(Revascularization for Unpro-
tected Left Main Coronary Ar-
tery Stenosis: Comparison of
Percutaneous Coronary Angio-
plasty versus Surgical Revase-
cularization) registry holds data on
consecutive patients from 12 ma-
JOR academic cardiac centers in Korea that performed PCI or
CABG for unprotected LMCA disease (defined as stenosis
>50%) between January 2000 and June 2006. The registry
is initiated and sponsored by the Korean Society of Inter-
ventional Cardiology, and there was no industry involve-
ment in the design, conduct, or analysis of this study.
Current study population comprised 858 consecutive pa-
AGENTS with unprotected LMCA disease who underwent
DES implantation between May 2003 and June 2006.

Stent implantation methods for left main disease have
been described previously (4,10,17). The choice of SES
(Cypher and Cypher Select, Cordis, Johnson & Johnson,
New Brunswick, New Jersey) or PES (Taxus Express and
Liberté, Boston Scientific, Natick, Massachusetts) was at
the discretion of the physician. Interventions for any other
clinically important types of coronary artery disease were
performed according to current practice guidelines (2). All
patients undergoing PCI were prescribed aspirin plus clo-
pidogrel (loading dose, 300 or 600 mg) before or during the
coronary intervention. After the procedure, aspirin was
continued indefinitely, and clopidogrel was continued for
at least 6 months. Extended use of clopidogrel beyond 6
months was at the discretion of the physician.

This study was approved by the ethics committee at each
hospital, which allowed the use of clinical data for this
study.

Study end points and definitions. The primary outcome
was the composite of death, myocardial infarction (MI), and
target vessel revascularization (TVR) during follow-up.
Secondary outcomes were each clinical outcome (death, MI,
or TVR) and stent thrombosis.

All-cause mortality was considered. An MI was defined
as a pathologic new Q wave on an electrocardiogram or an
increase in creatine kinase-myocardial band level to >3
times the upper limit of the normal range. In our study,
TVR was defined as repeat revascularization of the treated
vessel, including any segments of the left anterior descend-
ing and/or left circumflex artery (15). Stent thrombosis was
assessed by Academic Research Consortium definitions,
with the pre-specified key end point being definite or
probable (18). By the timing of presentation, stent throm-
bosis was classified as acute, subacute, late, and very late if it
occurred within 24 h, 30 days, 30 days to <1 year, or ≥1
year, respectively, after the procedure. Procedural success
was defined as a residual diameter stenosis of ≤30% by
quantitative coronary angiography, without in-hospital ma-
JOR adverse events (death, Q-wave MI, stent thrombosis, or
emergent revascularization).

All outcomes of interest were confirmed by documenta-
tion at each hospital and were centrally adjudicated by an
independent group of clinicians who were blinded to stent
type.

Data collection and follow-up. Clinical, angiographic,
procedural or operative, and outcome data were collected
with the use of a dedicated Internet-based reporting system.
For validation of complete follow-up data, information
about vital status was obtained through July 15, 2007, from
the National Population Registry of the Korea National
Statistical Office with a unique personal identification num-
ber. Follow-up MI, stent thrombosis, and TVR were based
on clinical diagnoses assigned by the patient’s physician and
were centrally adjudicated by the local events committee at
the University of Ulsan College of Medicine, Asan Medical
Center, Seoul, Korea.

Statistical analysis. Continuous variables were compared
with the Student t test or the Wilcoxon rank sum test, and
categorical variables were compared with the chi-square test
or Fisher exact test as appropriate. Unadjusted cumulative
event rates were estimated by the Kaplan-Meier method
and compared with the log-rank test.

Crude and adjusted risk for adverse outcomes were com-
pared by univariate and multivariable Cox proportional hazards
regression analysis (19). Variables reported in Tables 1 and 2
with a p value ≤0.2 in univariate analyses were candidates for
multivariable Cox proportional hazards models. The final
models were determined by backward elimination procedure.
The proportional hazards assumption was confirmed by exam-
ination of log (−log [survival]) curves and by testing of partial
(Schoenfeld) residuals (20), and no relevant violations were
found.

A propensity score analysis was also performed to control
selection biases among the DES groups (21). The propen-
sity scores were estimated without regard to outcome
variables, with multiple logistic regression analysis that
included all covariates listed in Tables 1 and 2. Model
discrimination was assessed with χ²-statistics (0.79), and
model calibration was assessed with Hosmer-Lemeshow
statistics (p = 0.38). The individual propensity score as well
as type of stent were incorporated into Cox proportional
ehazard regression models as a covariate to calculate the
propensity adjusted hazard ratio.

All p values were 2-sided, and a probability value of p <
0.05 was considered significant. All statistical analyses were
performed with SPSS version 12.0 for Windows (SPSS Inc., Chicago, Illinois).

Results

Baseline characteristics and procedure. Of the 858 patients with unprotected LMCA disease who underwent DES implantation, 669 patients (78%) were treated with SES and 189 patients (22%) were treated with PES. The baseline clinical, angiographic, and procedural characteristics of these 2 groups are listed in Tables 1 and 2. There were no significant between-group differences in clinical characteristics, except that patients treated with PES were older and had higher mean EuroScore than those treated with SES. The 2 groups also had comparable angiographic and procedural characteristics, except that a higher percentage of patients with SES underwent the procedure with intravascular ultrasound guidance and direct stenting.

In-hospital and long-term clinical outcomes. During the index hospital stay, there were 21 (2.4%) in-hospital deaths (2.4% in the SES, and 2.6% in the PES group), 4 (0.5%) Q-wave MIs (0.4% in the SES, and 0.5% in the PES group), and 4 (0.5%) urgent revascularizations (0.3% in the SES, and 1.1% in the PES group). The rate of procedural success was similar in the SES (97.4%) and PES (98.1%) groups (p = 0.37).

The median follow-up was 852 days (interquartile range 605 to 1,118 days) in the overall population, 875 days (interquartile range 635 to 1,143 days) in the SES group, and 876 days (interquartile range 627 to 1,143 days) in the PES group. Complete follow-up data for major clinical events were obtained in 98.9% of the overall cohort. During the entire follow-up period, 65 patients (8.6%) died, 42 (64.6%) from a cardiovascular cause; 66 (7.7%) had an MI (5 Q-wave, >61 non–Q-wave), and 92 (12.7%) had TVR. Table 3 summarizes the cumulative incidences and long-term relative risks of clinical outcomes during the 3-year follow-up among the 2 groups. A crude analysis showed that the risks of death, MI, TVR, and the primary composite outcome were similar in the SES and PES groups (Fig. 1, Table 3).
These results were also consistent after multivariable and propensity-adjusted Cox regression analyses. During the follow-up period, 7 patients (0.8%) had definite or probable stent thrombosis: 4 (0.6%) in the SES, and 3 (1.6%) in the PES group (adjusted p = 0.18). Of the patients treated with SES, 1 had acute stent thrombosis and 3 had subacute stent thrombosis (2, 5, and 11 days after the procedure). Of those treated with PES, 2 patients had subacute stent thrombosis (3 and 22 days after the procedure) and 1 had late stent thrombosis (201 days after the procedure). Two patients died of stent thrombosis (case-fatality rate, 28.6%).

Table 2

Angiographic and Procedural Characteristics of Patients According to Stent Group

<table>
<thead>
<tr>
<th>Variable</th>
<th>SES (n = 669)</th>
<th>PES (n = 189)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion location</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Ostium and shaft</td>
<td>277 (41.4)</td>
<td>92 (48.7)</td>
<td></td>
</tr>
<tr>
<td>Bifurcation</td>
<td>392 (58.6)</td>
<td>97 (51.3)</td>
<td></td>
</tr>
<tr>
<td>Extent of diseased vessel</td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Left main only</td>
<td>125 (18.7)</td>
<td>29 (15.3)</td>
<td></td>
</tr>
<tr>
<td>Left main plus single-vessel disease</td>
<td>164 (24.5)</td>
<td>36 (19.0)</td>
<td></td>
</tr>
<tr>
<td>Left main plus 2-vessel disease</td>
<td>178 (26.6)</td>
<td>58 (30.7)</td>
<td></td>
</tr>
<tr>
<td>Left main plus 3-vessel disease</td>
<td>202 (30.2)</td>
<td>66 (34.9)</td>
<td></td>
</tr>
<tr>
<td>Right coronary artery disease</td>
<td>280 (41.9)</td>
<td>89 (47.1)</td>
<td>0.20</td>
</tr>
<tr>
<td>Restenotic lesion</td>
<td>19 (2.8)</td>
<td>8 (4.2)</td>
<td>0.33</td>
</tr>
<tr>
<td>Use of glycoprotein IIb/IIIa inhibitors</td>
<td>51 (7.6)</td>
<td>8 (4.2)</td>
<td>0.10</td>
</tr>
<tr>
<td>Guidance of intravascular ultrasound</td>
<td>495 (76.4)</td>
<td>123 (65.8)</td>
<td>0.004</td>
</tr>
<tr>
<td>Direct stenting</td>
<td>154 (23.0)</td>
<td>25 (13.2)</td>
<td>0.003</td>
</tr>
<tr>
<td>Lesion preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting balloon</td>
<td>25 (3.7)</td>
<td>4 (2.1)</td>
<td>0.28</td>
</tr>
<tr>
<td>Directional atherectomy</td>
<td>18 (2.7)</td>
<td>3 (1.6)</td>
<td>0.39</td>
</tr>
<tr>
<td>Rotational atherectomy</td>
<td>2 (0.3)</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>Maximal inflation pressure (mm Hg)</td>
<td>15.8 ± 3.9</td>
<td>15.8 ± 4.4</td>
<td>0.99</td>
</tr>
<tr>
<td>Number of stents implanted in LMCA lesion</td>
<td>1.2 ± 0.5</td>
<td>1.2 ± 0.5</td>
<td>0.70</td>
</tr>
<tr>
<td>Total stent length (mm) in LMCA lesion</td>
<td>33.4 ± 22.1</td>
<td>31.5 ± 20.6</td>
<td>0.28</td>
</tr>
<tr>
<td>Average stent diameter (mm)</td>
<td>3.3 ± 0.2</td>
<td>3.4 ± 0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Number of stents implanted/patients (including LMCA and other vessels)</td>
<td>2.1 ± 1.2</td>
<td>2.1 ± 1.2</td>
<td>0.96</td>
</tr>
<tr>
<td>Total stent length/patients (including LMCA and other vessels)</td>
<td>58.5 ± 23.2</td>
<td>55.1 ± 21.3</td>
<td>0.26</td>
</tr>
<tr>
<td>Bifurcation treatment</td>
<td></td>
<td></td>
<td>0.94</td>
</tr>
<tr>
<td>Single stenting (cross over)</td>
<td>244 (62.2)</td>
<td>60 (61.9)</td>
<td></td>
</tr>
<tr>
<td>Complex stenting (≥2 stents)</td>
<td>148 (37.8)</td>
<td>37 (38.1)</td>
<td>0.90</td>
</tr>
<tr>
<td>Kissing stenting</td>
<td>48 (32.4)</td>
<td>10 (27.0)</td>
<td></td>
</tr>
<tr>
<td>T stenting</td>
<td>26 (17.6)</td>
<td>8 (21.6)</td>
<td></td>
</tr>
<tr>
<td>Crush stenting</td>
<td>71 (48.0)</td>
<td>18 (48.6)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>3 (2.0)</td>
<td>1 (2.7)</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean ± SD or n (%). LMCA = left main coronary artery; other abbreviations as in Table 1.

During the follow-up period, 7 patients (0.8%) had definite or probable stent thrombosis: 4 (0.6%) in the SES, and 3 (1.6%) in the PES group (adjusted p = 0.18). Of the patients treated with SES, 1 had acute stent thrombosis and 3 had subacute stent thrombosis (2, 5, and 11 days after the procedure). Of those treated with PES, 2 patients had subacute stent thrombosis (3 and 22 days after the procedure) and 1 had late stent thrombosis (201 days after the procedure). Two patients died of stent thrombosis (case-fatality rate, 28.6%).

Table 3

Crude and Adjusted Hazard Ratios of Clinical Outcomes According to Stent Group

<table>
<thead>
<tr>
<th>Outcome</th>
<th>SES</th>
<th>PES</th>
<th>Crude</th>
<th>p Value</th>
<th>Multivariable Adjusted</th>
<th>p Value</th>
<th>Adjusted for Propensity</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary composite outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, MI, or TVR</td>
<td>25.8</td>
<td>25.7</td>
<td>1.02 (0.71–1.49)</td>
<td>0.90</td>
<td>0.95 (0.64–1.41)</td>
<td>0.79</td>
<td>0.99 (0.67–1.46)</td>
<td>0.95</td>
</tr>
<tr>
<td>Secondary outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>9.1</td>
<td>11.0</td>
<td>0.88 (0.49–1.56)</td>
<td>0.66</td>
<td>0.92 (0.47–1.80)</td>
<td>0.82</td>
<td>0.93 (0.50–1.71)</td>
<td>0.81</td>
</tr>
<tr>
<td>MI</td>
<td>8.1</td>
<td>8.0</td>
<td>0.95 (0.54–1.70)</td>
<td>0.87</td>
<td>0.80 (0.43–1.48)</td>
<td>0.47</td>
<td>0.87 (0.48–1.59)</td>
<td>0.66</td>
</tr>
<tr>
<td>TVR</td>
<td>12.1</td>
<td>10.6</td>
<td>1.04 (0.63–1.73)</td>
<td>0.87</td>
<td>1.10 (0.53–2.29)</td>
<td>0.81</td>
<td>1.11 (0.55–2.26)</td>
<td>0.77</td>
</tr>
</tbody>
</table>

*Outcome rates were derived from Kaplan-Meier curves. Hazard ratio for SES with reference of PES. CI = confidence interval; MI = myocardial infarction; TVR = target vessel revascularization; other abbreviations as in Table 1.
Discussion

Major findings in the current study were that: 1) PCI with DES implantation was effective and safe in patients with unprotected LMCA disease; 2) no significant differences in long-term cardiovascular events were observed between SES and PES; and 3) the documented stent thrombosis rate after LMCA stenting with both stent types was low.

Current guidelines have recommended CABG as the treatment of choice for patients with unprotected LMCA disease (1,2), on the basis of clinical trials demonstrating survival benefit of CABG over medical treatment (22–25). However, because of technical feasibility and marked advancements in PCI devices and adjunctive pharmacology, many clinicians have performed PCI as an alternative revascularization option for these patients. Several registry trials (9–11,13,14,26) have also reported encouraging results—that elective DES implantation in patients with LMCA disease shows acceptable mid-term outcomes, with mortality rates of 0% to approximately 5% and need for TLR rates of 5% to approximately 14% during 1 year. These studies had several limitations, however, including relatively low patient numbers, limited duration of follow-up, and use of a single-center registry.

Several small observational studies have compared outcomes of the 2 first-generation types of DES (SES vs. PES) for LMCA stenting (12,27,28). In a single-center, nonrandomized study comparing SES and PES in 110 patients with LMCA disease, angiographic results (late loss in the main branch [0.32 vs. 0.46 mm] and side branch [0.36 vs. 0.52 mm]) and long-term clinical outcomes (death/MI [16% vs. 18%] and TVR [9% vs. 11%]) were comparable (28). A recent large randomized trial (ISAR-LEFT MAIN [Intracoronary Stenting and Angiographic Results: Drug-Eluting Stents for Unprotected Coronary Left Main Lesions]) found that SES and PES were equally effective and safe in patients undergoing unprotected LMCA stenting (29). After 12 months, the incidences of death (6.6% vs. 5.0%), MI (4.6% vs. 5.0%), stroke (1.0% vs. 1.7%), and major adverse cardiac event (death, MI, or revascularization; 15.8% vs. 13.6%) were comparable (29). Our results validate the findings from the recent RCT (ISAR-LEFT MAIN). In addition, our study provides the longer-term follow-up results up to median 3 years in a routine clinical practice.

Most clinical studies comparing SES and PES for non-LMCA coronary lesions have reported better angiographic results with SES than with PES due to higher suppression of neointimal growth by the former. This
angiographic trend, however, was not directly reflected in significant differences in clinical outcomes (30,31). In patients with LMCA stenting, the impact of late lumen loss on clinical outcomes such as TVR might be less pronounced, due to the relatively short length of the lesions and the larger artery diameter, as compared with other coronary lesions.

Concerns have been raised recently regarding the long-term safety of DES, with particular regard to late stent thrombosis and late mortality (32–34). Increasing concern over stent thrombosis, which might have more catastrophic consequences in patients undergoing unprotected LMCA stenting, and a lack of long-term clinical data have hampered the widespread use of PCI with DES as an alternative to CABG. A recent multicenter registry of 731 patients undergoing LMCA stenting with DES found that the rate of definite or probable thrombosis after 30 months was 0.95% (35). Similar results were observed in another large registry (DELFT study [Sirolimus Versus Paclitaxel Drug-Eluting Stent for Left Main Registry]), with 3-year rates of definite, probable, and possible stent thrombosis of 0.6%, 1.1%, and 4.4%, respectively (27,36), and in a clinical study (ISAR-LEFT MAIN) with a 2-year rate of definite or probable stent thrombosis of 1.3%. We observed a similar incidence of definite or probable stent thrombosis (0.8%), providing further evidence that DES implantation in patients with unprotected LMCA disease results in lower or, at worst, similar rates of stent thrombosis and long-term mortality than are observed in patients with other coronary lesions (37).

Study limitations. First, our study was a nonrandomized observational study. Second, because the choice of specific DES type was mainly determined according to the physician’s or patients’ preference, there might be selection bias. Despite multivariable adjustment with propensity score, hidden biases might exist because of the influence of unmeasured hidden confounders. In addition, because we did not perform a detailed angiographic analysis, we could not exclude the possibility of concealed angiographic superiority for a specific type of DES. Due to the exploratory nature of the current study, a priori sample size calculation was not pre-specified. Therefore, our results could be underpowered to detect significant differences. Finally, because we did not study whether newer-generation stents are as effective or more effective for LMCA lesions, the current findings apply only to the first-generation DES platform, such as PES and SES.

Conclusions

In a large cohort of patients with unprotected LMCA disease who underwent DES implantation, SES and PES showed similar long-term clinical outcomes. Randomized trials with long-term follow-up are required to clarify the long-term efficacy and safety of DES implantation compared with CABG for treatment of unprotected LMCA disease.

Reprint requests and correspondence: Dr. Seung-Jung Park, Department of Cardiology, University of Ulsan College of Medicine, Cardiac Center, Asan Medical Center, 388-1 Poongnap-dong, Songpa-gu, Seoul 138-736, Korea. E-mail: sjpark@amc.seoul.kr.

REFERENCES

Key Words: drug-eluting stent left main coronary artery disease PCI.