PCI for Chronic Total Occlusion :Evolving Technology

Evolving Technololgy

- Excimer Laser
- Ultrasound
- Radiofrequency
- Microdissection
- Fibrinolysis
- MDCT
- IC NaviView
- Magnetic RF Wire

Evolving Technololgy Ablative Tools

Excimer laser

Prima Laser wire 0.014"

Specifications

- Size = .014"
- Fiber = 8 fibers(45 microns)
- Coil = 30 cm radioopaque
- Proximal shaft = 150 cm Nitinol hypotube Teflon coated
- Exchange length = 180 cm
- Active area = 0.127 mm2
- % active area = just over 11%
- Max energy = 1 1.2 mj

Superwise

- Next generation .014" laser guidewire
- Steering and handling characteristics similar to standard mechanical guidewires
- Laser ablation enhances CTO crossing ability (approximately 0.04 mm/pulse)
- 180 cm working length

Point 9 X-80 Catheter

- Two product configurations
- Vitesse (Rx) 110-004
- Extreme (OTW) 110-002
- 0.9 mm tip diameter
- .014 or smaller guidewire compatibility
- 6 French guide catheter compatibility
- 80 fluence, 80 hertz maximum laser parameters
- 10 second "on", 5 second "off" lasing sequence

TOTAL: Total Occlusion Trial with Angioplasty by Using Laser GuideWire

- 18 European Centers, 303 patients
- 1⁰ Endpoint: Reaching the True Lumen Within 30 Min of Fluoroscopic Time

	Laser Wire (n=144)	Mechanical Wire (n=159)	P Value
Primary Endpoint (%)	52.8	47.2	NS
Acute Adverse Events (%)	0	0.6	NS
Restenosis Rate at 6 mo (%)	45.5	38.3	NS
Reocclusion Rate (%)	25.8	16.1	NS

P.Serruys et al, Eur Heart J 2000:21;1797-1805

Debulking Prior To Stenting After Revascularization of Chronic Total Occlusions

176 CTO Lesions Treated With Excimer Laser, Directional or Rotational Atherectomy

	Stent Alone (n=126)	Debulking+Stent (n=50)	P Value
Angio.Success (%)	97.1	100	NS
Final MLD (mm)	2.62 ± 0.7	2.70 ± 0.6	NS
Hospital MACE (%)	3.7	2.3	NS
MACE at FU (%)	19.6	25.6	NS
TLR (%)	14.4	16.3	NS

Gruberg et al, JACC, 2000

Evolving Technololgy Ablative Tools

Ultrasound

Description of Procedure

 Generator provides an electrical signal to the reusable handpiece

- Handpiece converts the signal to acoustic energy
- Small diameter flexible guidewire vibrates at 20 kHz, ablating tissue via cavitation along distal 20 cm active length

OmniWave Technology

 OmniWave Technology is the first technology that delivers controlled acoustic energy along the active section of a flexible 0.004" – 0.025" wire

OmniWave Technology Energy Delivery

First-Generation Ultrasonic Energy Delivery vs. OmniWave[™] Technology

Previous tip-based energy delivery

Effective Diameter

OmniWave Technology energy delivery

Effective Diameter

Evolving Technololgy Ablative Tools

Radiofrequency

OCR Waveform Displays Simple Display Feature

Investigational Device, Not available for sale in the US.

CTO: Technical Challenges

OCR Monitor Signal

OCR SafeSteer System

- Forward looking guidance system, using OCR to determine tissue types (plaque vs arterial wall).
- Designed to navigate through total occlusion.

The Crosser[™] System

- Generator converts line power into high frequency current
- Transducer
 converts electric current
 into mechanical vibration
- The Crosser catheter

The CrosserTM System Clinical Experiences

54 pts with 56 CTO, Refractory to guidewire Mean occlusion length 27 mm (8~46 mm)

Average time spent 2:43 min
MACE (2 NQMI) 3.6 % (2/56)

Clinical perforation 0 %

High frequency mechanical recanalization is a promising technology.

G. Sutsch et al, JIM 2004

The prospective Guided Radiofrequency Energy Ablation of Total Occlusions (GREAT) trial

116 Lesions 21 Centerswith CTO "Failure to Cross"

GREAT Trial				
116 pts 21 Centers				
 Device Success 	54.3%			
 Complications 				
- Clinical Perforations	2.6% (3)			
• Device related	0.9% (1)			
- MACE (6 NQMI)	5.2%			
- MACE + Clinical Perforations	6.0% (7)			

Baim DS et al. Am J Cardiol 2004;94:853-858

Evolving Technololgy Mechanical Tools

Blunt Microdissection

LuMend Frontrunner[®] X39 CTO Catheter with Micro Guide Catheter

Coronary & Peripheral CTO's

Frontrunner[™] CTO Catheter

- Indicated for Chronic Total Occlusions
- Controlled Blunt Micro
 Dissection Technique
- Multiple distal tip openings
- 4.0 & 4.5 French catheter platforms
- No external energy source

FrontRunner Catheter Controlled Blunt Micro-Dissection

Blunt controlled passage through occlusion
Uses elastic properties of adventitia vs. inelastic fibrocalcific plaque

Frontrunner[™] CTO Catheter

Controlled Blunt Micro-Dissection Technique

- Gently separates atherosclerotic plaque in various tissue planes, creating a passage through the CTO
- Uses elastic properties of adventitia versus inelastic properties of fibrocalcific plaque to create fracture planes

LUMEND FRONTRUNNER CORONARY CATHETER CONTROLLED BLUNT MICRO-DISSECTION TECHNIQUE

LuMend Frontrunner[®] X39 CTO Catheter

- .039" (2.8F) distal tip size
- 2.3mm opening
- 55% reduction in catheter surface area vs. original Frontrunner
- Shortened distal rigid segment (improves tip shape and steerability)
- Guide wire like handling/size

X39 compared to .035" guide wire

Frontrunner X39

LuMend Frontrunner® Micro Guide Catheter

- Support/Transitional catheter used with Frontrunner X39 *PTCA baloon/guide wire concept*
- Tapered tip
- 4.5 French/127cm working length
- Torqueable braided shaft
- 7 French guide cath recommended
- Easy transition of ancillary devices to and from occlusion site *Wires, balloons, etc.*

Frontrunner Technique

Actuation, Retraction, and Torque

- 1. Firm engagement before actuation
- 2. Feel for resistance, and look for slow opening
- 3. Retract after every actuation and confirm jaw closure
- 4. Torque back into position before next actuation
 - Assures closure
 - Improves engagement

Equipment Selection

Guiding Catheters

6F vs 8F
 Left Coronary

 JL4 vs XB vs AL
 Right Coronary
 JR4 vs HS vs AL (.75 vs 1)

Frontrunners

- 1. Curved vs Straight jaws
- 2. Curved 25 degree vs 36 degree
- 3. Small vs Large jaws
- 4. New devices
 - Bottlenose, FR 4.0, FR 2.8

Frontrunner[™] CTO Catheter Clinical Trial

- Prospective, controlled multi-center trial
- 107 patients enrolled
- CTO patients refractory to a ten minute (fluoroscopy time) guide wire attempt
- Success defined as placement of guide wire beyond CTO in the true vessel lumen
- Mean Lesion Length: 22mm
- Range of Lesion Length: 2-53mm

FrontrunnerTM CTO Catheter Clinical Trial

Results (Lesion length=23mm)

Outcome	Number (n=107)	Rate (n=107)	
Successful delivery to CTO	96	89.7%	
Advanced distal to CTO	66	61.7%	
Wire placed distal to CTO in true vessel lumen	60	56.1%	

Frontrunner[™] CTO Catheter Clinical Trial Complications (Potentially Device Related)

- Perforation
 - With tamponade or hemopericardium 0
 - Without tamponade or hemopericardium 2 (1.9%)
- AMI
 - Q-Wave
 - Non Q-Wave CK>3x
- Other
 - Includes one death

0 2 (1.9%) 4 (3.7%)

Adverse events evaluated by independent adjudication CEC/DSMB.

Clinical Outcomes of FrontRunner Catheter

- N =909
 - Pre-approval phase: 119 (using the largest device),
 - Post-approval phase: 197 (using a smaller, more flexibe catheter),
 - Current design: 593(using X-39 Frontrunner)
- Lesion length: >30mm in 21%
- Success rate
 - Pre-approval phase: 56%
 - Post-approval phase: 59%
 - Current design: 61%
- Perforation: 0.9%

Yang YM, et al. Catheter Cardiovasc Interv 2004;63:462

FrontRunner Catheter Milan Experiences

50 pts with 50 CTO, Refractory to guidewire Mean occlusion length 38.3 ± 22 mm

 Overall Device Success 50 % (25)
 Coronary perforation 17.3 % (9)
 Adverse events @ 30 days 15.7 % (8) 7 non-Q wave MI, 1 sudden death

Relatively high risk of perforation !

A Colombo et al, ACC 2004

FrontRunner Catheter

Advantages

- Torqueable
- Guide support
- Directable/Steerable
- Hydrophilic coating
- Blunt tip to avoid perforation
- Avoids side branches

Disadvantages

- Difficult anatomy: tortuosity, small vessel, heavy calcium
- Expensive
- 8 Fr guiding for curved jaw
- Failure Modes

Evolving Technololgy Mechanical Tools

Fibrinolysis

IntraCoronary Lytic Infusion for Failed PCI of CTO

- 85 patients with CTO \geq 3 months, failed PCI
- 8 hour infusion (Guide + IC Catheter)
- 61 tPA 0.25 mg/hr (weight adjusted)
- 24 TNK 0.5 mg/hr
- IV Heparin, ACT 200-250 seconds
- Hematoma 8%; Transfusion 3.5%

IC Lytic Infusion for CTO

 Lytic Infusion did not directly recanalize the CTO – but did "facilitate wire crossing" – ? Mechanism – clot lysis or activation of other proteolytic enzymes (Matrix metalloproteinases)

Matrix Metalloproteinase

- Zinc and calcium-dependent enzymes that catalyze the breakdown of protein
- MMP-1, MMP-2, MMP-9, MMP-3
- Degrade all extracellular matrix components
- 3 broad categories: Collagenases, gelatinase, and stromelysins

Strauss BH et al, Circulation 2003;108:1259-62

Guide-Wire Crossing at 72 hours

Success Collagenase 450 ug

Failure Placebo

Strauss BH et al, Circulation 2003;108:1259-62

Description of Procedure

A: Chronic Total Occlusion

B: Failure to Cross with Guide Wire (Choice PT, Wizdom)

C: Infusion of Collagenase through Wire Port

D: Collagenase Diffusion Through Occlusion

E: Successful Guide Wire Crossing

Chronic Total Occlusion Revascularization *Alternative Technologies*

- FlowCardia CROSSER System
 - High frequency mechanical revascularization
 - Monorail, and OTW
 - 0.014" wire and 6 Fr guide compatible
 - Straight and angled tip configurations

Investigational Product Only. Not Available for Sale in the U.S.

Chronic Total Occlusion Evolving Technology and Strategy

New Generation

• MSCT

• IC NaviView

• Magnetic RF Wire

Multislice CT Coronary Angiography

- Quantification of the length of the occlusion
- Definition of plaque composition
- Identification of calcification
- Evaluation of distal vessel
- Definition of the intra-occlusion angle

Multislice CT Coronary Angiography

- CT angiography is able to provide complementary data to that of the conventional angiography that may be relevant to the success of the CTO recanalization.
- May provide a more precise lesion length, accurate data on plaque compositon and calcium extent and location and intraplaque angle.

Multislice CT Coronary Angiography Predictors of success/failure

Length <15 mm (+)

Severe calcification (-)

- Blunt stump
- Occlusion length >15 mm
- severe calcification

Mollet NR et al, Am J Cardiol 2005;95:240-243

Identify Point on CT Data

AXIOM Artis dFC Magnetic Navigation

Magnets outside the body control the catheter, which is equipped with a specially magnetized tip

IC NaviView* – From the Touch Screen

• Simply touch the vessel location to align the guidewire

* Powered by Paieon Inc., 3-D Reconstruction Software

Prototype Magnetic RF Wire* Steering and Ablation

Test in Agar Lesion Phantom

Methodology: Magnetic directional enhancement of .014" / .018" RF guidewire Clinical Advantages: Provides distal tip steerability and flexibility (for optimized magnetic tip deflection)- while providing ablative energy at tip

* Developed in collaboration with Baylis Medical

